
International Journal o f  Theoretical Physics, Vol. 25, No. 1, 1986 

An Estimation of the Fine Structure Constant Using 
Fiber Bundles 

D.  K. Ross  1 

Received June 20, 1985 

We calculate go/e where go is the strength of an elementary magnetic monopole 
and e the charge on the electron, in terms of a ratio of loop sizes in the twisted 
and untwisted principal fiber bundles with U(1) the structure group and R 3 - {0} 

the base space. The result involves the present distance around the U(1) space 
and, rather surprisingly, the structure of the quantum gravitational vacuum. 
Combining our result with the expression for eg o from the Dirac quantization 
condition gives a final estimate for the fine structure constant, a - 1/100. 

1. I N T R O D U C T I O N  

Several  a t tempts  have been  made  to ca lcula te  the e lec t romagne t i c  fine 
s tructure cons tant ,  a. The  long p rog ram of  Johnson  et al. (1964, 1967, 1973), 
o f  Baker  et al. (1969, 1971), and  of  Ad le r  (1972) to ca lcula te  a as the va lue  
o f  the UV-s tab le  fixed po in t  in quan tum e lec t rodynamics  ran  into computa -  
t ional  and  pe rhaps  concep tua l  difficulties (Gross  and  Wilczek,  1973). Wyle r  
(1969, 1971) cons ide red  the seven-d imens iona l  g roup  0 ( 5 ,  2) and  equa ted  

to the vo lume  of  the full  g roup  d iv ided  by  the vo lume o f  the subg roup  
of  the five real  d imens ions .  The resul t ing n u m b e r  is very close to the  
expe r imen ta l  value  for  t~, but  the phys ica l  re levance  o f  these  groups  is not  
at all clear.  

In  the  p resen t  pape r ,  we present  the  idea  that  t~ is re la ted  to the 
geomet r ica l  s t ructure  o f  a p r inc ipa l  fiber bund le  with U(1) as the  s t ructure  
g roup  and  R 3 -  {0} ( co r r e spond ing  to a s tat ic  charge)  as the  base  space.  I t  
is well  k n o w n  that  an electr ic  charge e co r r e sponds  to the untwis ted  tr ivial  
bund le  whi le  a magne t i c  m o n o p o l e  g co r r e sponds  to the twis ted  bundle .  
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Since magnetic monopoles are fundamentally involved, we can use the 
Dirac (1931, 1948) quantization condition 

e g / h c = n / 2  (1) 

where n is the number of fundamental magnetic monopole charges present, 
to relate e and g. go will be used in the following to refer to the n = 1 case 
in (1) so that in general g = ngo. We will relate go/e to the structure of the 
relevant fiber bundles and then combine our result with Dirac's to estimate 
e and go separately. 

We present the details below. In Section 2, we look at the structure of 
the fiber bundles in detail and find an expression for go/e in terms of loops 
in the U(1) space and in space-time. We then discuss the quantities we 
need in this expression, calculate the fine structure constant a, and make 
a few concluding remarks in Section 3. 

2. S T R U C T U R E  O F  T H E  FIBER B U N D L E  

We want to find an expression for go/e in terms of the structure of the 
relevant fiber bundles. We consider a principal fiber bundle E with U(1) 
as both the structure group G and typical fiber F (Daniel and Viallet, 1980). 
Since we are interested in a static charge, we take the base space B to be 
R 3-{0} where the position of the charge (or magnetic monopole) at the 
origin is deleted, exactly as in the work of  Wu and Yang (1975) on magnetic 
monopoles. The topological properties of  a fiber bundle are unmodified if 
the base is contracted. Since S 2 is the pullback of R 3 -  {0}, we can take S 2 
to be our base space. Thus both electric charges and magnetic monopoles 
are represented by a U(1) (homeomorphic to S 1) principal bundle over S 2. 

Let us define the fiber bundle more exactly using the work of Choquet-  
Bruhat, DeWitt-Morette,  and Dillard-Bleicke (1977). Let II be a continuous 
surjective mapping II: E ~ B. Then I I - l (x)  is called the fiber at x, also 
denoted by Fx, where x e B. Let B be covered by a family of open sets 
{ Uj :j  E J ~ N}. Then a fiber bundle must satisfy the following: 

(1) Locally the bundle is homeomorphic to a product bundle. Thus 
H-l(Uj)  is homeomorphic to Uj x F for all j ~ J. The homeomorphism 

A A 

~bj :/I-1(Uj) -> Uj • F has the form Oj(P) = (II(P),  0j(P)). Thus thj[Fx also 
A 

denoted by 4~j,x is a homeomorphism from Fx onto F. 
(2) The structure of the fiber bundle is determined by what happens 

A A _ I  
in the overlap region. Let x c Uj c~ Uk. The homeomorphism ~bk, x ~ d)j.x: F --> F 
is an element of the structural group G for all j, k ~ J. If  G has only one 
element the bundle is trivial. 
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A A_I  
(3) The induced mapping gjk: Uj ~ Uk ~ G by x -~ gjk(x) = ~bk, x ~ ~bs.x is 

continuous, gjk(X) is known as the transition function. 
Now for the present case,  in general, two coordinate patches are 

required to cover S> These can be.chosen to be 

Ul:O<~O<Tr/2+6,  0<~ ~b<2~ 
(2) 

U2: ~ / 2 - a < 0 ~ < ~  ", 0~<4~<27r 

with 0 < 6 -< 7r/2. These overlap in a band along the equator. Following Wu 
and Yang (1975), i fa  magnetic monopole is present, a singularity-free vector 
potential (connection) can be separately written down in regions U1 and 
U2. In the overlap region, these two vector potentials are related by a gauge 
transformation exp(2igecb/hc).  Requiring this gauge transformation to be 
single valued leads directly to the quantization condition (1). In fiber bundle 
language the transition function is 

g~2( qS ) = exp( ZigeoS / he ) = exp(in~b) (3) 

where e is the electron charge and g the charge of a magnetic monopole. 
This gives the structure of the fiber bundle. We note that the overlap region 
above can be contracted to S 1 (the equator of $2). The transition function 
(3) maps this S 1 overlap region in the base space (as ~ ranges 0 to 2~-) 
into the structural group which is U(1) (homeomorphic to S 1) in the present 
case. Clearly (3) is a one-dimensional unitary transformation for any value 
of ~,. 

The integer n tells how many times the overlap region is wrapped 
around the U(1) space. Thus if n --0 in (3) so that no magnetic monopoles 
are present, we have g~2(~b) = 1 and thus a trivial product bundle. In this 
case, the overlap region S ~ is mapped into a single point of U(1) and we 
have an electric charge present. If n = 1, the overlap region S 1 is mapped 
around U(1) (or S 1) exactly once, and we have a nontrivial bundle. A 
particle with one magnetic charge is present. If n = 2, the overlap region 
S 1 is mapped around U(.I) twice. A particle with magnetic charge of twice 
the fundamental unit is present, and so on. To summarize: If S 1 maps to 
a point of U(1), an electric charge is present; if S 1 maps around the U(1) 
space n times, then a magnetic monopole of charge ngo is present. 

From the above discussion, the only difference between an electric charge 
and an elementary magnetic monopole go in the fiber bundle formalism is 
whether the overlap region S ~ maps to a point o f  U(I)  or wraps around it 
once. Now how can we relate this mathematical fact to the strength of the 
gauge coupling c~ ? The work of Souriau (1963) and of Chodos and Detweiler 
(1980) provides the clue. Both groups find that if one considers the Klein- 
Gordon equation in Kaluza-Klein (1921, 1926) space (or equivalently in 
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our fiber bundle which is a five-dimensional Riemannian manifold complete 
with metric) and assumes that the wave function of the particle is periodic 
with respect to the fifth coordinate, then in four dimensions the particle 
satisfies the usual Kle in-Gordon equation with minimal coupling to the 
electromagnetic field and with charge 

~/2 4"n'Lp 
e=(hc) ~ R  (4) 

Lp=- (hG/c3) ~/2 is the Planck length and R the radius of  the compact U(1) 
space. Note that the distance around the U(1) space cannot be calculated 
in the above Kaluza-Klein type theories because these theories are globally 
scale invariant (Gross and Perry, 1983). Attempts to calculate this distance 
around the U(1) space by using the breaking of dilatation invariance due 
to quantum effects have also failed (Appelquist and Chodos, 1983). The 
mass of the dilation is not determined. (4) does not in any way restrict or 
determine e but merely relates it to the unknown R. 

Now (4) tells us that (I) the electric charge e is related to the circumfer- 
ence 2~-R of  the compact space U(1) in the Kaluza-Klein or fiber bundle 
model context. [This relationship to e makes sense since Bergmann (1942) 
has shown that the circumference of a closed space, in which all self- 
intersecting geodesics are closed lines without discontinuities of direction, 
is a characteristic constant of  that space.] We also have the fact found above 
that (II) the only difference between an electric charge and an elementary 
magnetic monopole is whether the overlap region S a maps to a point of 
U(1) or wraps around it once. (I) and (II) combined then naturally lead 
to the following hypothesis: , 

go circumference of the compact space U(1) 
- ( 5 )  

e "distance around a point" 

We need to refine what we mean by the expression (5). Both the 
numerator and denominator must be taken to refer to the respective distances 
in physical terms. (4) gives us the numerator directly. The "distance around 
a point" in the denominator must refer not to a mathematical point but to 
the distance around the tiny black hole that makes the dominant contribution 
to the quantum gravitational vacuum (Hawking, 1978). We shrink our 
overlap region S 1 as far as quantum gravity will allow to get this "distance 
around a point".  Note that we really want a ratio of  distances around loops 
in (5) because magnetic monopoles are characterized by 111(Ua) and thus 
homotopies of loops are the relevant mathematical structures. Thus a more 
precise way to write (5) is in the form 
go - circumference of the compact space U(1) (6) 

e circumference of the dominant space-time loop of quantum gravity 
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3. ESTIMATION OF THE FINE STRUCTURE 
CONSTANT AND DISCUSSION 

To complete our calculation of go/e in (6) we need an expression for 
the denominator. For this we need quantum gravity, since that determines 
the Planck-scale structure of space-time. Unfortunately, no complete, self- 
consistent theory of quantum gravity exists, so that only an estimate is 
possible. Hawking (1978) has looked at the quantum gravitational vacuum 
and has estimated that the dominant contribution to the path integrals is 
roughly Planck mass black holes with about one black hole per Planck 
volume. Following Hawking (1978), to estimate the mass M of the black 
holes giving the dominant contribution, one must maximize the partition 
function We -~ as a function of M. Using W =  M/2 ,  from Gibbons and 
Hawking (1977) and the black hole action J~=47rM 2 gives Mdominant~--- 
1/(8~r) 1/2 in units of the Planck mass. The distance around a black hole is 
4~rM so that the 

4rr 
circumference of the dominant space-time loop ~ L p  (7) 

where Lp is the Planck length. 
We are now ready to plug the circumference of the compact space 

U (1) from (4) and the circumference of the dominant space-time loop from 
(7) into (6) and thus to calculate go/e. We find 

go_ (877") 1/2 
e ~ (8) 

a =- e2/hc, however, so (8) gives 

go = (8rr)'/2( hc) a/: (9) 

directly. Putting this into the Dirac quantization condition (1) with n = 1, 
ego/he = 1/2, then gives 

1 1 
a = - -  (10) 

32~- 100 

for the fine structure constant. Since we considered a static charge, this 
represents the low energy m Also since the dressed, physical a is the one 
responsible for the size of the U(1) dimension (Chodos and Detweiler, 
1980), this result would represent the a measured in the laboratory. 

The result (10) comes out surprisingly close to the experimental value 
of 1/137, especially considering the uncertainties in the calculation. One 
might hope that a more refined treatment of the fiber bundles along the 
lines suggested here with a better treatment of the quantum gravitational 
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vacuum and o f  the compactif icat ion o f  the U(1) space would  lead eventually 
to agreement  with experiment.  This paper  should  be considered only a first 
small step. The biggest surprise in our  calculat ion is that  quan tum gravity 
is involved in the calculat ion o f  a at all. This is consistent with the work 
of  Salam and  Strathdee (1970) on the role that  quan tum gravity might  play 
in regulating infinities in QED.  

Our  method  of  calculating go /e  f rom the geometry  o f  the relevant 
twisted and  untwisted fiber bundles  has a certain conceptual  attractiveness, 
in spite o f  the above uncertainties.  Extending the above method  to the 
calculat ion o f  the coupl ing constants o f  non-Abel ian  gauge theories should  
be possible, but  will undoub ted ly  hold a few surprises. 
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